会员
传感器技术及应用
韩裕生 乔志花 张金编更新时间:2018-12-27 15:58:43
最新章节:参考文献开会员,本书免费读 >
本书既详细阐述了各类传感器的基本原理、工作特性,又着重分析了其接口电路的设计原理和工程应用实例。全书共12章,第1、2章介绍传感器的概念、分类及基本特性;第3~11章分别讲述电阻式、电感式、电容式、压电式、磁电及磁敏式、热电偶、超声波、光电式、数字式、固态图像、红外、光纤、集成式传感器的工作原理、性能、接口电路和实际应用。第12章介绍传感器的典型应用实例。
上架时间:2013-02-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
韩裕生 乔志花 张金编
主页
同类热门书
最新上架
- 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字 - 会员
PyTorch深度学习与企业级项目实战
《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字 - 会员
机器学习实战(视频教学版)
《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、计算机10.1万字 - 会员
人工智能新时代:核心技术与行业赋能
本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字 - 会员
AIGC辅助数据分析与数据化运营:场景化解决方案与案例分析
这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营能力的著作。用扎实的理论框架、丰富的实践案例、实用的操作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、优化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。本书采用案例驱动的写作方式,通过实际业务案例详细拆解AI技术在各个场景中的应用步骤和技巧。语言简洁易懂,理论与实践结合,注重实计算机17.2万字 - 会员
Python视觉分析应用案例实战
本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字 - 会员
Sora革命:重塑人工智能
Sora是一个文本生成视频工具,本书介绍了Sora在视频生成领域的巨大潜力。本书共9章,系统讲解人工智能的演进、Sora的应用实践、Sora深度解析、Sora的挑战与未来等。本书内容全面、图文并茂、经典易懂,适合想要学习Sora的初学者,以及想要学习文本生成文本、文本生成图片、文本生成视频等内容的人工智能爱好者、自媒体从业人员、短视频制作者、设计师、相关专业的企业和高校人员阅读。计算机3.2万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
机器学习
机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算计算机22.7万字