会员
定位技术
杨恒 魏丫丫 李彬 郭丹等计算机网络/计算机理论、基础知识· 10.6万字
更新时间:2018-12-27 17:23:37
最新章节:参考文献开会员,本书免费读 >
本书对目前使用到的各种定位技术和定位系统进行了全面描述,详细阐述了定位业务的概念、原理、流程和应用方法。主要内容包括:卫星定位技术,基于移动通信网络的定位技术和扇区定位的业务流程,WiFi定位技术、混合定位技术、传感器定位技术和RFID定位技术等室内定位技术。
上架时间:2013-01-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
杨恒 魏丫丫 李彬 郭丹等
主页
同类热门书
最新上架
- 会员
多源信息融合推理与应用
本书共共15章,主要包括多源信息融合处理理论与方法及多源信息目标检测、识别和应用两部分内容。书中具体讲述了多源信息融合处理的基本概念以及多源信息融合发展的核心理论方法,如Dempster-Shafer证据理论等;介绍了多源高冲突信息鲁棒性证据推理方法、多辨识框架下异构证据融合方法以及多值迁移融合方法等多种融合技术;给出了多源信息融合的典型应用,特别是在不确定数据分类、多源信息融合检测与识别领域的实计算机17万字 - 会员
文心一言从新手到高手(写作+绘画+教育+编程+助手)
文心一言是百度推出的一款基于大语言模型的生成式AI产品,《文心一言从新手到高手(写作+绘画+教育+编程+助手)》详细介绍了其在不同领域的应用方法,是一本全面、详尽的文心一言使用指南。《文心一言从新手到高手(写作+绘画+教育+编程+助手)》共8章,依次讲解了文心一言的基础知识、创意写作、零基础绘画、数据分析、营销文案写作、职场百宝箱、求职招聘、教育教学、学生学习、编程辅助、生活顾问、插件、文心一言A计算机12.2万字 - 会员
深度强化学习:算法原理与金融实践入门
深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(D计算机16.9万字 - 会员
人工智能数学基础
本书面向广大数据科学与人工智能专业的学生及初学者,力求通俗易懂、简洁清晰地呈现学习大数据与人工智能需要的基础数学知识,助力读者为进一步学习人工智能打好数学基础。全书分为4篇,共19章:微积分篇(第1~5章),主要介绍极限、导数、极值、多元函数导数与极值、梯度下降法等;线性代数篇(第6~10章),主要介绍向量、矩阵、行列式、线性方程组、特征值和特征向量等,并介绍这些数学知识在人工智能中的应用;概率统计算机8.5万字 - 会员
深度探索Vue.js:原理剖析与实战应用
本书系统的介绍了Vue框架基础、框架应用、生态组成、项目实战、框架演进、Vue原理剖析及Vue框架的原理实现。全书共分为8章:第1章为行业发展介绍,第2章为Vue2.x的开发基础,第3章为Vue2.x的组件开发,第4章为VueCLI开发完全指南,第5章为VueCLI项目实战,第6章为Vite+Vue3完全开发指南,第7章为Vue3.x项目实战,第8章为实现原理介绍。书中主要内容包括:W计算机13.9万字 - 会员
微课设计与制作标准教程(全彩微课版)
《微课设计与制作标准教程(全彩微课版)》内容围绕微课制作展开,以实用高效为写作目的,用通俗易懂的语言对微课设计与制作的相关知识进行详细介绍。计算机6.6万字 - 会员
H5页面设计与制作标准教程(全彩微课版)
《H5页面设计与制作标准教程(全彩微课版)》以H5为写作基础,以实际应用为指导思想,用通俗易懂的语言对H5页面设计与制作的相关知识进行详细介绍。H5页面设计的魅力在于通过巧妙的设计手法,将复杂的功能简化,将枯燥的信息趣味化,让用户在享受视觉盛宴的同时,轻松获取所需内容。《H5页面设计与制作标准教程(全彩微课版)》共7章,内容涵盖初识H5、H5视觉交互设计技巧、H5页面元素的设计与制作、H5页面动效计算机6.6万字 - 会员
细说机器学习:从理论到实践
《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K计算机17.6万字 - 会员
深度强化学习理论与实践
本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字