![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
6.3 亥姆霍兹和基尔霍夫积分定理[1],[3],[4]
6.3.1 亥姆霍兹方程
对于频率为ν的单色光波,其场量可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0005.jpg?sign=1738803245-rBkyF0JngDdGItaivq8fzbWnFrLzmJt7-0-0aec9a55d1cd966691954e7e3e6fb627)
U(P)和φ(P)分别为振幅和初相位。引入复振幅,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0006.jpg?sign=1738803245-cAxyz1bc6yxkb9ROZNoK2z2Yri38D8ar-0-e0f18eab6f28b646a9e9c3c4921faba5)
则可将式(6.3-1)表示为场量复数形式(P)exp(-i2πνt)的实部,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0008.jpg?sign=1738803245-gkwX74Wi22GVuoSkQMgf1hDc1WvE5DXZ-0-947d145ed2872f6cb50bb29a5d604986)
光波场u(P,t)在无源点满足标量波动方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0009.jpg?sign=1738803245-hVSQhuUEzb4N0UTvW8dBsmzVCjfpiO3O-0-5abecb84b89913615b99b5c4d0d7f014)
对于单色光,其场量对时间的关系确定,其复振幅满足的空间分量微分方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0010.jpg?sign=1738803245-YpfiYiWake42muVuhc7dVWqes91xWt67-0-11c654411c4982486fe87225eaea22c0)
其中,k为波数,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0011.jpg?sign=1738803245-IlLPdNE7TmS4HpDumoiu9V12khTvBOjM-0-58ddbc54108464fb381d431618a0444b)
式(6.3-5)称为亥姆霍兹方程。光波场中任意一点的场值即亥姆霍兹方程的解,这个解可以通过基于格林定理的积分定理来获得。
6.3.2 格林定理
假设S为封闭曲面,G、U分别是空间位置的复函数,且在S内和S上单值并连续,并存在一阶和二阶偏导数。用G、U构造一矢量F
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0001.jpg?sign=1738803245-Tcmk4iRQ34VRE3qyGRpXTqBLudxGFcLM-0-d1bea282b6afc176ec1040bd0ec72a91)
则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0002.jpg?sign=1738803245-FWkS3EPZNQRt7PGyFof6ZVJpzPcQOcCf-0-742797f40fb98ece9320a0c55a6fd2aa)
应用高斯定理
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0003.jpg?sign=1738803245-PMLajiUCIIRJLMHnDeeOvPnBlGIUgqly-0-b32319c711db67625d3c4b005ef24a99)
上式右边有负号是因为n取S内法线矢量的缘故。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0004.jpg?sign=1738803245-o3VuyjW9pzbCzeVhdWGCCdHNkWHgFMVf-0-7bd2c2d42b047edb7918ff05ebaa1076)
格林定理是标量衍射理论的数学基础,只要选择合适的格林函数G和封闭曲面S,就可以用格林定理来分析很多衍射问题。
6.3.3 亥姆霍兹和基尔霍夫积分定理
为了利用格林定理来求解亥姆霍兹方程,需要构造格林函数G。设观察点位于P点,S1为包围P点的任意封闭曲面,如图6.3-1所示。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0005.jpg?sign=1738803245-oZ3LRfOnS0UOBoY8jGYVdQhqc9R6UUwp-0-80488adcf6ea7e2283f24c9a3586ad24)
图6.3-1 积分区域
令U为单色光场的复振幅。假设G表示由P点发出的同频率发散球面波,则对任意点P1有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0006.jpg?sign=1738803245-odzETkUMHdoIqcaSPuGinPYBjqybkT0I-0-de1ba3e6f385de80dad16cccf2a9d42d)
r为从点P到点P1的距离。若要运用格林定理,函数G及其一阶、二阶导数必须在封闭曲面包围的区域V内是连续的,但在图6.3-1中封闭曲面S1内,式(6.3-11)所定义的格林函数在P点为奇点,不满足在区域V内连续的条件。因此需要将
P点从积分区域排除,为此以P点为球心,ε为半径作一小球,球面为S2。曲面S1和球面S2所围的区域为V',则在区域V'内,G(P)满足亥姆霍兹方程,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0007.jpg?sign=1738803245-upfmyP4Vd4gVHBt6DWNLBPIgQk6e0vLX-0-123f48c6a50ff0c98341dee1b2945901)
U也满足亥姆霍兹方程,根据格林定理有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0008.jpg?sign=1738803245-HWjAqqPlGYbhYJCx6thLTEJngzzoz3mZ-0-12878ff71270027fbdb3a9b65fcf6bfb)
显然,在曲面S2上,内法线沿径向,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0009.jpg?sign=1738803245-FRURPRm5PepRJ0rii3nEeJlos0OrUU8G-0-8221e73d055e018171e77a09011e36b1)
式中,dΩ表示立体角,Ωε为S 2面相对P点所张的立体角。将式(6.3-11)代入上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0001.jpg?sign=1738803245-QGGQ5GGZ0mvtP5Gld6qfboLtT0rYMFJW-0-0b7dfb2c863adb0531260ee440e3e93e)
注意,在得到上式过程中用到条件及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0003.jpg?sign=1738803245-9a4MrDtIOh1xLrvehAL6Bhn0beCIJ7o9-0-fcd36e5bf0ea4286e2c9a8df01a25633)
P1为S2上的任一点。假设ε为无限小量,并且函数U及其导数在P点周围是连续的,则式(6.3-15)右边第二个积分趋于零而第一个积分变为4πU(P)。因此
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0004.jpg?sign=1738803245-6mut3SvpO9scofe8ocEydyqJ70oIGKhE-0-6f15d9c29074b29e2eb2381b0751b300)
将上式代入式(6.3-13)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0005.jpg?sign=1738803245-4jzCdUYXaGRAUBszQxuNT1MkrM75uJRu-0-eaa816a2f881ddbd9d072b477e808401)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0006.jpg?sign=1738803245-RIyuwjyTemOSA9wk6myYB2Kqp7ppbcML-0-98e70060814d6eff7b950ace03d2d9d1)
式中,r0是位矢r的单位矢量,式(6.3-18)为亥姆霍兹和基尔霍夫积分定理,它给出一个重要结果:如果某一函数U满足亥姆霍兹方程,且函数U及其法向导数在某一封闭曲面上已知,则该函数在曲面内任一点的值都能够确定。