![经济数学—概率论与数理统计学习辅导(高等学校经济管理数学基础辅导系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/400/23912400/b_23912400.jpg)
二、典型例题
(一)利用古典概型的概率计算方法及运算法则求事件{X=k}的概率(即X的分布列),并进一步求X的分布函数
例1 一台设备由三大部件构成,在设备运转中各部件要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,试求:
(1)X的分布列;
(2)X的分布函数F(x);
(3)P{X=2.5}, P{X≤1}, P{1<X<3}.
解 设事件Ai={部件i需要调整}(i=1,2,3),由题设知P{Ai}=0.1, P{A2}=0.2, P{A3}=0.3, X的可能取值为0,1,2,3,注意到A1, A2, A3相互独立.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0001.jpg?sign=1738979319-JocMDMgBBO4mI9CAeuqYAt76IyL30ug3-0-74438b2c114e57421baea5b9d77db907)
于是X的分布律如下表所示:
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0002.jpg?sign=1738979319-Msv50an1pL7W48qIHohHbft7FkwR2E2D-0-40502e202415741f1e0d9f68e2618dc1)
(2)X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0003.jpg?sign=1738979319-aBYjLagtbvkBRmZxfHbYcISjXKCK2qTr-0-2611c46bd9f0765a26d8e8f1f5c978f0)
(3)P{X=2.5}=0,
P{X≤1}=P{X=0}+P{X=1}=0.504+0.398=0.902,
P{1<X<3}=P{X=2}=0.092.
(二)应用分布的充要条件求分布中的未知参数或确定分布
例2 求下列分布中的未知参数a:
(1)已知随机变量X的分布律为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0004.jpg?sign=1738979319-AricdUrOCUItw1ygcfn5LOQPAsVOz1Z1-0-4ef9fbdc3338d6e7556b06e65e8adfb4)
(2)已知随机变量X的概率密度为(x∈R, λ>0, μ为常数).
解 (1)由题设知0<a<1,且(1-a2-2a)+(1-5a2)+a=1,由此解得.
(2)由题设知,而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0004.jpg?sign=1738979319-FoFOP83ucf70o16LyB20j0ZPX4wMlZzd-0-478515c2ba1eb08ce40771804baa81c2)
故
例3 设连续型随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0006.jpg?sign=1738979319-IO98YvHCYCBbYJdfX64wN4THbvzr8Noe-0-37bd54592557324859a125f55cdeb9f0)
试求:(1)A, B的值;
(2)P{-1≤X≤1};
(3)X的概率密度f(x).
解 (1)由分布函数的性质F(+∞)=1,可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0007.jpg?sign=1738979319-XGAMgijkD5PNEW2DvP7FDNdLkFfLmm0F-0-5a07e35d47bb1c4da085199fc47e467a)
又由于X是连续型随机变量,因此F(x)连续,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0008.jpg?sign=1738979319-S7jEkvmFljyUprligXGdy0i9HYm6xP0N-0-5f3bafb5f50ff44314a2ec137e69af69)
所以有A+B=0,从而B=-1,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0009.jpg?sign=1738979319-9wtDh3Ev6XYqepCouCAIXIpoKRhfyKyH-0-9402f48eb2ad946710dab1c9dc5bba68)
(2)P{-1≤X≤1}=P{-1<X≤1}=F(1)-F(-1)=1-e-2.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0010.jpg?sign=1738979319-iELdICflWXfRtxFNqxPCZku9sJWZhjvs-0-e675d9f1c40eec6199423647c1d0c952)
(三)分布函数、分布律、概率密度函数之间的关系与转换
例4 (1)已知离散型随机变量X的概率分布为P{X=1}=0.2, P{X=2}=0.3, P{X=3}=0.5,求X的分布函数.
(2)已知随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0011.jpg?sign=1738979319-tgTZsT55fdjayYgLFYJscWH9DFHNN8S6-0-fdfe83395c0e8160887b114d73f5ffb2)
对X的每一个可能取值xi,有P{X=xi}>0,求X的概率分布.
解(1)应用公式即可求得分布函数
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0001.jpg?sign=1738979319-aAcsLrdUtNxB4REx0EeG8oNtCBevGi9n-0-bdbd9d4e1651db9e99ba45e847a15e55)
(2)应用公式P{X=a}=F(a)-F(a-0)即可求得X的分布律
P{X=-1}=0.4-0=0.4,
P{X=1}=0.8-0.4=0.4,
P{X=3}=1-0.8=0.2.
例5 已知连续型随机变量X的概率密度函数为, x∈(-∞, +∞),求X的分布函数F(x)及
解
于是当x≤0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0005.jpg?sign=1738979319-EEyvGI2zH0k2Apchxfpis9E96vYNkZ9b-0-616a827359f42636ea0f1f1d6f3b1a41)
当x>0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0006.jpg?sign=1738979319-5Yoop8o9s7H3wlhe3kletPxjPfZ7TsZm-0-536c3603262e4564b6c409189580e33a)
综上可得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0007.jpg?sign=1738979319-o8ua7L9js8z2L3tLGMVHxujfmfF6ivFn-0-d1294fc8dccaca05e9c1dd2575eed21d)
继而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0008.jpg?sign=1738979319-1bjTGlx0fmjucAIF8yJa1XJ85nOoBSny-0-97da10599f689670c35d738899cc0d54)
例6 设随机变量X的概率密度函数关于x=μ对称,证明其分布函数满足
F(μ+x)+F(μ-x)=1, -∞ <x<+∞.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0009.jpg?sign=1738979319-xgbCcEjZALoAd40YZCt3Deomnt1BUOCK-0-efdf04cd82c831a1139602339d9fefe5)
又由概率密度函数的对称性知
f(μ-u)=f(μ+u), u∈(-∞, +∞).
故有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0001.jpg?sign=1738979319-rGiBXtR7CGfluUyOfF0yehL3RZx1p1Ro-0-32fa5dbecf233c7d354aaecd686386ae)
例7 (1993年数四)设随机变量X的概率密度为f(x),且f(x)=f(-x), F(x)是X的分布函数,则对任意实数a,有( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0002.jpg?sign=1738979319-qU5O7WuwAqS5YMhMmxL737CE8T2R9wmz-0-8f485a61186cd4b0d59ef3b3a37d62f5)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0003.jpg?sign=1738979319-XsQIKrnqKMQ08oe1aBbgMAdPuIcnXxPg-0-52d3e9aa9049bae69bde6f038f520f59)
C.F(-a)=F(a);
D.F(-a)=2F(a)-1.
解 由题设知f(x)为偶函数,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0004.jpg?sign=1738979319-rbyOBWjpsV3VfFo1G57U7AwJ4coRG4Js-0-fea0d5dcef3e62d84d28f6a39e2134ea)
而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0005.jpg?sign=1738979319-vqGUjWLtmf14sfLLPSpgbyBAZ46TagWp-0-f19e7a0f9cc1e6757b9c452e150f3370)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0006.jpg?sign=1738979319-j1gZ7sUathT26LzElSwIA5Gb7MEcqP0x-0-482575c42c533f4bed1461d4efcb0b69)
因而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0007.jpg?sign=1738979319-t1YSADSJwNO1sLzzND2BN9RJSvhqae49-0-b37178eb2d1d942562c0323a188343f5)
应选B.
(四)几种重要分布的应用
例8 假设一大型设备在任意长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:
(1)相继两次故障之间时间间隔T的概率分布;
(2)在设备已经无故障工作8小时的情况下,再无故障运行8小时的概率Q.
解 (1)由于T是非负随机变量,可知当t<0时,有
F(t)=P{T≤t}=0.
当t≥0时,事件{T>t}与{N(t)=0}等价,所以当t≥0时,有
F(t)=P{T≤t}=1-P{T>t}=1-P{N(t)=0}=1-e-λt,
从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0008.jpg?sign=1738979319-xRkoMO8ivd0OQBsu2xQ0f5vZOTfc8Qqe-0-03b70ef5d3a0a781c89487155a8524f5)
即T服从参数为λ的指数分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0001.jpg?sign=1738979319-zsc7LyeCm6L7HLapLcI9ymQGIiIWg6mZ-0-0b6672f1150e5e7598e39df81198f303)
例9 假设测量的随机误差X服从正态分布N(0,102),试求在100次独立重复测量中,至少有3次测量误差的绝对值大于19.6的概率α,并利用泊松分布近似求出α的近似值(要求小数点后取两位有效数字).
解 设p为每次测量误差绝对值大于19.6的概率,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0002.jpg?sign=1738979319-RAbpzpPyThMDDvLfxEb7tXcCTUSTk0FU-0-bf935ab0dee71cde6d56167ddbda711d)
设Y是100次独立重复中事件“测量误差绝对值大于19.6”发生的次数,则Y~B(100,0.05),从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0003.jpg?sign=1738979319-Or3EbFLlmoPFhOqND4Qq9lngJfq1zzZK-0-5de09ee36e9b548af6fa1fd95b5c39c0)
由泊松定理,Y近似服从参数为λ=np=100 × 0.05=5的泊松分布,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0004.jpg?sign=1738979319-mk3SsTaQJFc2sbkiSYtysr4Hb7pTQ7uM-0-ccee0e8a00091224e3977aacff779f1e)
例10 现有两把精度不同的尺子,第一把尺子测量的误差服从正态分布N(0,4),第二把尺子测量误差服从正态分布N(0,9).现随机选取一把尺子进行测量,求测量误差的概率密度函数.
解 记X为尺子的标号,则,记Y为测量的误差,求FY(y)=P{Y≤y}.
由全概率公式,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0006.jpg?sign=1738979319-jDwim5K7qicYoPpmXpVNev87KAcMCseg-0-62a14f2ee6a5d1a7bddb62b047d87181)
从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0007.jpg?sign=1738979319-LRL8p4pQ7eJY2AziLNuvrVvBYbvKg8Z5-0-c8bdff341d15c1caebc2644e8dbd94fe)
例11 设顾客在某银行的窗口等待服务的时间X(单位:min)服从指数分布,其概率密度为, .
顾客在窗口等待服务,若超过10min,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求P{Y≥1}.
解 该顾客在窗口未等到服务而离开的概率为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0009.jpg?sign=1738979319-DZ9xQz7W3bp8Wr44fR7A1mr5EU6LX8j3-0-88531d2f17ada2cbe235cd7d286a481c)
显然Y~B(5, e-2),故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0010.jpg?sign=1738979319-ntPOczBejtCPcePon8yt6amHWgShGTfD-0-1e1e1c17c72c3941b1a0caa11abf590a)
P{Y≥1}=1-P{Y=0}=1-(1-e-2)5=0.5167.
例12 在电源电压不超过200V,200~240V,超过240V三种情况下,某种电子元件损坏的概率分别为0.1,0.001,0.2.假设电源电压服从正态分布N(220,252),试求:
(1)该电子元件损坏的概率α;
(2)该电子元件损坏时,电源电压在200~240V的概率β.
解 令A1={电压不超过200V}, A2={电压在200~240V}, A3={电压超过240V}, B={电子元件损坏},则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0001.jpg?sign=1738979319-xV14MnOBwcPYUXtxYkN82PpQycLLeOog-0-0ee3295528babb6a0b90fb64e22b553d)
由题设知P(B|A1)=0.1, P(B|A2)=0.001, P(B|A3)=0.2.
(1)由全概率公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0002.jpg?sign=1738979319-ETfbfT9jaiNxZdVgrxrFePOO3tkawtt2-0-3dbbf66aaec8acb43f235185421c8596)
(2)由贝叶斯公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0003.jpg?sign=1738979319-BTgM0B2doa5GFS3egOVaSiY3UPwrUeIW-0-33b54d454e0e7f3592d3934a26a90e58)
(五)由随机变量X的分布求其函数的分布
例13 设X在区间(-2,1)服从均匀分布,求Y=X2的概率密度.
解 X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0004.jpg?sign=1738979319-YtQBpOvSduKbBq3OSrggesuB1MhTWdOL-0-d7b13e9cd0ba51d8e7395b24a81309dc)
先来求Y的分布函数FY(y).因0<Y=X2<4,故当y≤0时,FY(y)=0,当y≥4时,FY(y)=1.当0<y<4时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0005.jpg?sign=1738979319-9uFo71cv4qShygXlHvD2zwfzdXpnnMny-0-75fa2b083a9458bc7281ec6000501d59)
将FY(y)关于y求导数得到Y的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0006.jpg?sign=1738979319-ZKEsFXIToCYmgsJMnmdI9FeBrp6hKJ3z-0-ac45316d78bb35e5658ec8563debb55b)
当0<y<1时 ,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0008.jpg?sign=1738979319-iFl4YtgsiB1SkR18RLwcDXe9WLcY8Zak-0-3c8ed4a2649b5b17a1988b95537e266a)
当1<y<4时 ,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0010.jpg?sign=1738979319-9LJSlEeFQ99RgagNCQIq8jhHtS6HQjqy-0-7729141a67de25db6d97bc80923f967b)
因此
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0001.jpg?sign=1738979319-Gt3nbhc2cyMzeBYdQLWmOucjWuOaTsiX-0-da65b529cc2cacd3cd71a0c2c6176b5c)
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0002.jpg?sign=1738979319-2VmcMPdnSZshmS7h7lOFrpHPIuYzCfv5-0-44b7acc054cf07e997de8f2a8e0a2667)
例14 假设随机变量X服从参数为2的指数分布,证明:Y=1-e-2X在区间(0,1)服从均匀分布.
解 由题意知,X的概率密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0003.jpg?sign=1738979319-bpn1XoxisTeVzQxGCrWtPiofly24K37T-0-cb2bd3e9c561978497eb0e89ddc09055)
函数y=1-e-2x是单调增函数,其反函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0004.jpg?sign=1738979319-3E5tYJSWZahQZa83kedQWLKGTARFM1fF-0-a475b4f10eb8f507a84e6a45cc543063)
当x>0时,0<y<1.所以由公式法可得Y=1-e-2X的概率密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0005.jpg?sign=1738979319-K687PCovcX9FU9QjJJoYEdP6ZCaSsKI6-0-b12d1b1e09d224fb1abc2cfc70dd4b39)
于是,Y在区间(0,1)上服从均匀分布.
例15 随机变量X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0006.jpg?sign=1738979319-zlOA7QvjT9AgQ7kU4imAeB4qfu8Rv1i8-0-93a769fd32b6c45b85eb4731557a3b98)
F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
解 当x<1时,F(x)=0,当x>8时,F(x)=1.当x∈[1,8]时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0007.jpg?sign=1738979319-SPV8Stw91Ozs6fTUO1AKboo2axHF1Mfq-0-2ec3228526e6ea25114d98935a6d1776)
设G(y)是随机变量Y=F(X)的分布函数,显然当y≤0时,G(y)=0,当y≥1时,G(y)=1.当0<y<1时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0001.jpg?sign=1738979319-noYiD6V39im6zjmjFjTf1OpnsXiWgrBb-0-823cc63f04b96330a05a05f36ae6bc20)
故Y=F(X)的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0002.jpg?sign=1738979319-HqUaAs8hAQ9vzM6BL35LHwsAB9YZyhBU-0-bdcfecb7975a4858be1f5d9f251de25b)