![计算机视觉特征检测及应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/808/26688808/b_26688808.jpg)
上QQ阅读APP看书,第一时间看更新
4.1 图像梯度与内积能量
4.1.1 图像梯度
真实图像中的噪声通常使用加性高斯噪声来建模[49-50]。如果f(x,y)、fr(x,y)和ξ(x,y)分别表示图像点X(x,y)处的实际灰度值、理想灰度值和噪声,则有:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_01.jpg?sign=1739251272-q90Mr2jDOpbjNinujsJdaav0C3M0WJgV-0-e188a73f15481973a562ce08d5252e79)
式中,ξ服从零均值、σ标准差的高斯分布,即ξ~N(0,σ2)。
记图像点X(x,y)处的梯度为g →(X)=[fx(X),fy(X)]。在数字图像处理中,通常用离散梯度模板计算图像点的梯度,大小为N×N(N=2R+1,R为模板的尺寸)的梯度模板的一般形式为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_02.jpg?sign=1739251272-Let46Gbtw7siUeSUfyD3CXYEuMd9Leq5-0-26a1a1453b1382409d8ad497fda22302)
其中,′表示矩阵转置。
于是,
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_03.jpg?sign=1739251272-At9ED9zzw06TXK74fFg6QI3sJd26qo7B-0-b98cded3198af07d93efc4ef971d3378)
记:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_04.jpg?sign=1739251272-WSuvitObl65nAOSiiBZFm9655f3zRQzz-0-8018403e45f218532eccfacb2c742409)
则式(4-4)和(4-5)可改写为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_05.jpg?sign=1739251272-k1D0Yi7pmRMNG3SKHimaZNC3X2QkYoH9-0-b7e4d0f99439f0640e57e57b4f64ddbd)
由于ξ(x+i,y),ξ(x-i,y)相互独立,且ξ(x+i,y),ξ(x-i,y)~N(0,σ2)故ξx(X)的数学期望和方差分别为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_01.jpg?sign=1739251272-g7UZyjau186KIuZBzzoaAmSm9npeIVUU-0-8092ff0f6497ea6b12aa6267df270f62)
同理, ξy(X)的数学期望和方差分别为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_02.jpg?sign=1739251272-2brGeEW3cRbXRr3zQXwMnEdqkkwBFQoM-0-ec8e2e25ec57dc65566f9ed95f23dc9d)
于是,记
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_03.jpg?sign=1739251272-PVu7p2jGbgJCPRtAWsrrqKF6EZf1LArU-0-4a7a41d0e1e0de7e088efd9e045a53f9)
则有ξx(X),。
4.1.2 内积能量的数学期望与方差
考虑点X(x,y)为中心r为半径的一个圆形区域G(X)={Xi‖Xi-X‖≤r2}内的图像点Xi(xi,yi),记,
分别为点X和Xi处的梯度,点X处的内积能量定义为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_07.jpg?sign=1739251272-DRDRjtp19inSFODvpnLDvtUxUvs7t7NL-0-128cb0fe93490be0db60454f69511cd3)
将
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_08.jpg?sign=1739251272-Dwfez53BrA1HCvUVtkmCUKdAimXyPpvC-0-92a7e31b2034315b0f4773a6765e13a8)
带入式(4-17),由内积的线性性质可知:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_09.jpg?sign=1739251272-UVpCvt0UWO36s43vVGR96LXMc4lU7msJ-0-19aa6fbaac7014c81b40ba066e3f0432)
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_01.jpg?sign=1739251272-QFgRlRJ62YX3SThcxBAobz5aXP11z4QT-0-ba25090836222dc44ff7f472e8d384d5)
因ξx(X),ξx(Xi),ξy(X),,且相互独立,所以内积能量IP(X)的数学期望为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_03.jpg?sign=1739251272-R93kfXtp7Lhqn74F285DwANyjrabdVbt-0-b92638226c01fa9a2607a9cff9082664)
内积能量IP(X)的方差为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_04.jpg?sign=1739251272-1Y3xt4AhRdqCqA3Clj6AZlxUQHk9olPX-0-ffb6006a3ae9917d8872980aec6d1355)
4.1.3 梯度幅值及其数学期望与方差
为了在下一节比较内积能量和梯度幅值在噪声抑制方面的性能,我们需要计算梯度幅值平方的数学期望与方差。点X(x,y)处的梯度幅值平方为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_05.jpg?sign=1739251272-3cMSEVTmlT3P9MTiRHpDQtHZ4rG8HRbR-0-a79f4db3a6045d698722492eaa47730a)
所以,M2(X)的数学期望为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_06.jpg?sign=1739251272-APbpUCCgalCtuD9lXXw4LMPz7FhiouSM-0-5572585b4e7238b4cc48f408bf9f004f)
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_01.jpg?sign=1739251272-AW013uEtIsuog0SI96D2Soz30ZWH2bh2-0-4e591c40838c23412a2f12222c7988f3)
下面计算M2(X)的方差。由于ξx(X),,从概率论的知识可知:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_03.jpg?sign=1739251272-F27w9stCEMKggyFQyRvh2oCTG5a8sb8R-0-dfd8275ad78864df90bbf6ba4ec8eaa8)
根据χ2分布的性质可得:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_04.jpg?sign=1739251272-GBQT7E5l6CkoCmDS1WGAYzQpQAPcIYYq-0-ee8dc68138f518bd3f3b4c7e2a3d1408)
于是,
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_05.jpg?sign=1739251272-eEnshBKDu4uqrc23Ufg8tFiEIhhaIIm9-0-5772bf6f54f36607b4dc95cd0a1f5f74)
因此,我们有:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_06.jpg?sign=1739251272-7TZ3IxLBARqm1IR11GHYbitmZlq5yzDr-0-d70dcf8c2cffb23f7760fc9230e6ace5)