![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第四届全国大学生数学竞赛预赛(2012年非数学类)
试题
一、解答下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
1.求极限.
2.求通过直线L:的两个相互垂直的平面π1和π2,使其中一个平面过点(4,-3,1).
3.已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0004.jpg?sign=1739009098-xRYFPj2pJq8TWSBAwNyVELk1fOq0P4oH-0-2f63a8699fbf8118e23bd9c93a5385bb)
4.设函数u=u(x)连续可微,u(2)=1,且在右半平面与路径无关,求u(x).
5.求极限.
二、(10分)计算.
三、(10分)求方程的近似解,精确到0.001.
四、(12分)设函数y=f(x)的二阶导数连续,且f″(x)>0,f(0)=0,f′(0)=0,求,其中u是曲线y=f(x)在点P(x,f(x))处的切线在x轴上的截距.
五、(12分)求最小的实数C,使得满足的连续的函数f(x)都有
.
六、(12分)设F(x)为连续函数,t>0.区域Ω是由抛物线z=x2+y2和球面x2+y2+z2=t2(t>0)所围起来的部分.定义三重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0012.jpg?sign=1739009098-R7KGQol97a0mAtQugVTXW0zQTTrjVR2u-0-7904a0a1f2c424fd4845688542c518bd)
求F(t)的导数F′(t).
七、(14分)设与
为正项级数.
(1)若,则
收敛;
(2)若,且
发散,则
发散.
参考答案
一、1.解 因为,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0005.jpg?sign=1739009098-UoUj2vXqFZPn5xgGHEaIxMRYO0PLNosU-0-c635acba4181f18a7dd853e8e4215182)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0006.jpg?sign=1739009098-COO2fNmosoiUtcMERSqoY7WVssbwAH3y-0-622092757076528c517fcb9136a7d5bb)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0007.jpg?sign=1739009098-cpZ5ak3hk1mHKRIWg4z7Fs2eZsyDbKkM-0-192d2145dc9f9f7cfe28236d3648d173)
2.解 过直线L的平面束为
λ(2x+y-3z+2)+μ(5x+5y-4z+3)=0,
即
(2λ+5μ)x+(λ+5μ)y-(3λ+4μ)z+(2λ+3μ)=0,
若平面π1过点(4,-3,1),代入得λ+μ=0,即μ=-λ,从而π1的方程为
3x+4y-z+1=0,
若平面束中的平面π2与π1垂直,则
3(2λ+5μ)+4(λ+5μ)+1(3λ+4μ)=0.
解得λ=-3μ,从而平面π2的方程为x-2y-5z+3=0.
3.解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0008.jpg?sign=1739009098-6hcvNQ5y2BxDJOsS1FyZLdrg3mivTkhB-0-338585d441393b5440ad93bed1c0d3cf)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0009.jpg?sign=1739009098-nXZKS8nnjQv4TU7xbN42VAiWFmROB7fE-0-e8f0a80287242735149db7bdcff2c3c2)
若使,只有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0011.jpg?sign=1739009098-zlQMWZPg3kqxt56BDd5kmZahkoJCmFdY-0-37329f021bbd7297b7b1b9f8d2657251)
即a=b=1.
4.解 由得(x+4u3)u′=u,即
,方程通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0014.jpg?sign=1739009098-rS50aarxWJC5PFEq2Xj8hBGfiWlrWTAq-0-dae467d31c1cf644a68f7b85045764eb)
由u(2)=1得C=0,故.
5.解 因为当x>1时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0016.jpg?sign=1739009098-W2FXdF1TlLtJX03ns7nCsxdNI5uOfhEA-0-35ea593640529408c0ed3e8fd80de6d6)
所以.
二、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739009098-DwGdNTA4L2unoNAzbf816nGEHb031hOD-0-615a957bbefa524318cddde6d57835d8)
应用分部积分法
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739009098-OyEJa6aLG0LP0MJzRtz9rTrcQ7vtCfll-0-c23582c37e4a356c4c0fce4a0b20976f)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739009098-jvvmaptNZgLzkcSOrMhrhrcdTQAF3GgR-0-aca5307f199ad946393f5b0335f701ee)
当nπ≤x<(n+1)π时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739009098-iPeARMsoU38LFiAy4nCi6zzkvuyiezDC-0-4483be57e8895fb62e6295c88b30b9d7)
令n→∞,由夹逼准则,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0005.jpg?sign=1739009098-TvLMTteMTKNTgFM1W1PHFzX6G4y41JdU-0-97b10916b8ada8b66f506bd627405777)
注 如果最后不用夹逼准则,而用
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0006.jpg?sign=1739009098-IiwDYmrlPT9cD9Dg4MplbYeE5dMDUJ2M-0-8cca1b974d83b3bed31d3b6bafe813a6)
需先说明收敛.
三、解 由泰勒公式有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0008.jpg?sign=1739009098-Nl8YSuLthY1bNXc9wwZgxDGHvB54uwsJ-0-e3f7df62143847b8ffd0dffbfe292186)
令得
,代入原方程得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0011.jpg?sign=1739009098-5mwpV2JI1z0qihaQYN8D2KzvgfCrN9fa-0-906579f7a06e5d564e72dd3f88cfb5f6)
由此知x>500,,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0013.jpg?sign=1739009098-8d9HJuBMExfDEA7QMCZZyxizVDFBDHGo-0-1b9ebfaa819d9e6c057638a0a5949bdc)
所以,x=501即为满足题设条件的解.
四、解 曲线y=f(x)在点p(x,f(x))处的切线方程为
Y-f(x)=f′(x)(X-x),
令Y=0,则有,由此
,且有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0016.jpg?sign=1739009098-ngbAQ0CmadRRvtKRjJkx7x9gFroboK6h-0-f9de99d39baf2e936415de5584a3f5be)
由f(x)在x=0处的二阶泰勒公式
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0017.jpg?sign=1739009098-c4le9Lyt42Oxuq5NnH54Dewc9DabHmbb-0-28c123e84a1881053e56a3e3a6c3360a)
得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0018.jpg?sign=1739009098-TlfpDAqrKFp9pdErUUxyuHIviGSrZH1b-0-09206a68fb8f961f6cd1493b2063c1b7)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739009098-BYDbyHnpMC1GdzML0zFV9QWrGU2yOqTl-0-d652ede2735b49848897c8da44487a4f)
五、解 由于.
另一方面,取fn(x)=(n+1)xn,则,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739009098-rfHfzsjoS4s8kXcjBB6FtczDvNAiCkUr-0-e557bf4eced4aa43e6e40f7ebcd177de)
因此最小的实数C=2.
六、解法1 记,则Ω在xy面上的投影为x2+y2≤g.
在曲线上任取一点(x,y,z),则原点到该点的射线和z轴的夹角为
.取Δt>0,则θt>θt+Δt.对于固定的t>0,考虑积分差F(t+Δt)-F(t),这是一个在厚度为Δt的球壳上的积分.原点到球壳边缘上的点的射线和z轴夹角在θt+Δt和θt之间.我们使用球坐标变换来做这个积分,由积分的连续性可知,存在α=α(Δt),θt+Δt≤α≤θt,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0009.jpg?sign=1739009098-E5sax7rMzWVnO3sjaqW0eB8IIZWLAleK-0-d548e694b62b47303e4caae6cc177fa2)
这样就有.而当Δt→0+时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0011.jpg?sign=1739009098-c0KPLIh26El2oHgltydvH7FX8O0s38zB-0-e60eabe96469efda87e0608e3d7836a5)
故F(t)的右导数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0012.jpg?sign=1739009098-k1wiMkORgxr9KzMDx0WTCJ7UycSvQXOo-0-d2ba0dd6535fed5358b3bfe3ed5eb6f2)
当Δt<0时,考虑F(t)-F(t+Δt)可以得到同样的左导数.因此
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0013.jpg?sign=1739009098-PUt6vN5Jvgffn6GPTRzyugZnEqsICEKa-0-ed1fdff469edf47dd7b1bad014d69b80)
解法2 令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0014.jpg?sign=1739009098-11dVEy8GMdAGOf6wGLxm0ImOy8Vcnlrt-0-1f583708adb4c044a99f68e4386a1b96)
其中a满足a2+a4=t2,即.故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0016.jpg?sign=1739009098-kn3IANZ6W67PmpFNOkJYQ2H71qjjEVXz-0-8087c67cc7be7db9bb8e361484d2933d)
从而有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0017.jpg?sign=1739009098-nmWup65Ji0WMHaWyttHs0O2tkdgTLNUG-0-a57df8f70e37d135ce7a6b2e1bc82bee)
注意到,第一个积分为0,我们得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0019.jpg?sign=1739009098-ngC35S2bZ8zioXcgqqPdzvP3s49OIwnb-0-f84d3dc2daeb82b9978423270d154684)
所以.
七、证 (1)设,则存在N∈N,对于任意的n≥N,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739009098-YTaIgTXugciMPojNNHjeCErCk2POxPP7-0-a66dff18235d4d2cd582caa2d48e0148)
因而的部分和有上界,从而
收敛.
(2)若,则存在N∈N,对于任意的n≥N,有
,于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0007.jpg?sign=1739009098-rtETH7WuIDlvpDZZvhay6898zOmlxXCU-0-5289b3a2f64790ebebbdde57e837d7c1)
于是由发散,得到
发散.