![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第六届全国大学生数学竞赛预赛(2014年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)已知y1=ex和y2=xex是二阶齐次常系数线性微分方程的解,则该方程是________.
(2)设有曲面S:z=x2+2y2和平面L:2x+2y+z=0,则与L平行的S的切平面方程是________.
(3)设函数y=y(x)由方程所确定,求
.
(4)设,则
.
(5)已知,则
.
二、(12分)设n为正整数,计算.
三、(14分)设函数f(x)在[0,1]上有二阶导数,且有正常数A,B使得|f(x)|≤A,|f″(x)|≤B.证明:对任意x∈[0,1],有.
四、(14分)(1)设一球缺高为h,所在球的半径为R.证明:该球缺的体积为,球冠的面积为2πRh.
(2)设球体(x-1)2+(y-1)2+(z-1)2≤12被平面P:x+y+z=6所截的小球缺为Ω.记球缺上的球冠为Σ,方向指向球外,求第二型曲面积分.
五、(15分)设f在[a,b]上非负连续,严格单增,且存在xn∈[a,b]使得.求
.
六、(15分)设,求
.
参考答案
一、解 (1)由解的表达式可知微分方程对应的特征方程有二重根,r=1,故所求微分方程为y″-2y′+y=0.
(2)设P0(x0,y0,z0)是S上一点,则S在点P0的切平面方程为
-2x0(x-x0)-4y0(y-y0)+(z-z0)=0.
由于该切平面与平面L平行,所以相应的法向量成比例,即存在常数k≠0,使得
(-2x0,-4y0,1)=k(2,2,1).
解得x0=-1,,
,所以所求切平面方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739010017-UfHcgIP1Gbk0TrCOsQhBCBdxUo0iO2QX-0-5bd691d741bd43d6f9ae8c69feb10a32)
(3)显然y(0)=1,等式两端对x求导,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1739010017-gNbMuDLo5dkeE9PYcLqrX7emDs6HcYPM-0-724b082463d83f648450dc918c2d418b)
将x=0代入可得y′=3.
(4).所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0006.jpg?sign=1739010017-vkjbCZNtMhJwUA3DHCRK2kDtaDXNLxf1-0-33116628d604ad15ff4468a3ad8b0acb)
(5)由可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0008.jpg?sign=1739010017-5uC3S2zeqeIFUhaDmvWhAuPtZWJoHhwY-0-6413ff2cb5f9d12281fa837bd7e5c94a)
故有,其中α→0(x→0),即有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0010.jpg?sign=1739010017-AmoIP1YkP3YyZ0T5LbS3gEOb3Hy7U6gu-0-4c8c62a326286919ac3d1afca8de0161)
从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0011.jpg?sign=1739010017-nOpW3q0KKH08ZwUVfMXaxgNVKEQ2rTRn-0-f565a6c9d3432e73067995b738563054)
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0012.jpg?sign=1739010017-qeUdntPrnnYDKz784OumjnFvOv5xEVRW-0-51e2cec63f67087422e7177772ec9292)
令lnx=u,则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0013.jpg?sign=1739010017-Ecwngf3MW7QIqzQpGAl1yPtvhPkIhWSB-0-908d70b0c080d0b3e025e7238b2b9aed)
三、证明 由泰勒公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0014.jpg?sign=1739010017-ndVgOtNN0YDd4ChadacOmWHN3wrQhxvm-0-910828b521d38f759f7e2b57dc56dd4a)
上面两式相减,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0015.jpg?sign=1739010017-uYzpBDUBVY53KXETI3EAyP0JTneHghht-0-a18faf4aeecef1e8090f2c73f37d3c70)
由|f(x)|≤A,|f″(x)|≤B,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0016.jpg?sign=1739010017-lY622xcoxQMkOH8TM8qIwkr8GAz7ruhe-0-2ea41d1e2a47480dff22f66932a43d76)
又x2+(1-x)2在[0,1]上的最大值为1,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0017.jpg?sign=1739010017-RR4P6kzEIYvYNocra6JLUcPbcHP6wRhm-0-77aa48e21de06148275279fe68aaa8e1)
四、(1)证明 设球缺所在球表面的方程为x2+y2+z2=R2,球缺的中心线为z轴,且设球缺所在的圆锥顶角为2α.
记球缺的区域为Ω,则其体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739010017-HRcBwYzXIDr0BjJ1wJ5hYxI844EtHKq4-0-b07e0349a3d9cf8158aef6022dbdbb32)
由于球面的面积元素为dS=R2sinθdθ,所以球冠的面积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739010017-xA33y1rqzYmgOfsx5CGFysCCJPHKzVim-0-72481f1b017f7d67a597da2802963c5e)
(2)解 记球缺的底面圆为P1,方向指向球缺外,且记
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739010017-9729NILsorPEHXm2wVH9BgpKUNLgQzLS-0-83d5f0c09dd26f1c4f3c1abedcaad555)
由高斯公式得.其中V(Ω)为Ω的体积.
由于平面P的正向单位法向量为(1,1,1),故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1739010017-qNn8MdMcBVn1lRSoeymWTwQJYzv9g6cA-0-807709cb3b79df8d096bbfa49dce63bd)
其中σ(P1)为P1的面积,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0007.jpg?sign=1739010017-qpIro06LWff7PjMG7WJgu3ET1WmbMDMC-0-a16196f45f026860ce26e13ffab1c2ff)
由于球缺底面圆心为Q(2,2,2),而球缺的顶点为D(3,3,3),故球缺的高度为,再由(1)所证并代入
,
,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0011.jpg?sign=1739010017-Q2132yJeAFQf0J0fjwUYFxrKwb6l9SXT-0-3befc0e4d07692d3b59e94cd6e77fdb1)
五、解 考虑特殊情形:a=0,b=1.下面证明.
首先,xn∈[0,1].即xn≤1,只要证明∀ε>0(<1),∃N,当n>N时xn>1-ε.由f在[0,1]上严格单增,就是要证明
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0013.jpg?sign=1739010017-3EDEqWF8K1kq0svqYsMkTVVW2rE3DiMi-0-520af4dbbb05deacf35d6a5fc18cd801)
由于∀c∈(0,1),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0014.jpg?sign=1739010017-9dyjVR8OkP7C5gP8tWWDidyqQaH1OZOe-0-d6eb6a132d7554f4216f04b1fbf25572)
现取,则f(1-ε)<f(c),即
,于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0017.jpg?sign=1739010017-eFgzcyveTj2mG1uiYIpBfEUxNplb2EvC-0-b25335fc4147a664588adb48779fb6d3)
所以∃N,∀n>N时有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0018.jpg?sign=1739010017-9yKNmZPoqCjWpfGbC7dlZh2IUl4BYM4z-0-39ad2eb667259b0b06869eaaa25d580e)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0019.jpg?sign=1739010017-5GpmsKgHFEKfF0rPJ0CZlNfgQBg76rgG-0-b709a81c8f310834e6c8ca32af23c3f0)
从而1-ε<xn,由ε的任意性得.
再考虑一般情形,令F(t)=f(a+t(b-a)),由f在[a,b]上非负连续,严格单增,知F在[0,1]上非负连续,严格单增.从而∃tn∈[0,1],使得,且
,即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0023.jpg?sign=1739010017-VZ8YU6CRbDfX1mfcKpOtZzJxHySc8lFS-0-3eda6c54aa489bac53f81a11b05fbda5)
记xn=a+tn(b-a),则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739010017-JDwAMz0wmK2TrIpmZ3m3WwcpXaH0mIt4-0-97626c9390539b4242661461b9b4696e)
六、解 令,因为
,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0004.jpg?sign=1739010017-g5CY8xGAUcBXxDZfUJv5lhgo4uBj95ye-0-99bc253f15b47019c83d18597d6c0c0e)
记,则
.令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1739010017-nDw0fSJ8nQv34BciGMKUDbl9PpSjZFak-0-7a43f4005c18960818caae8b59476f1f)
由拉格朗日中值定理,∃ξi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0008.jpg?sign=1739010017-fSmXxOlE17Z5VOTVS0qfdoBlMyAFQX1A-0-93406b03e968b412a2439b074bc5cf41)
记mi,Mi分别是f′(x)在[xi-1,xi]上的最小值和最大值,则mi≤f′(ξi)≤Mi,故积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0009.jpg?sign=1739010017-YPEX5SUtgv04A84sPtMSK3is8SZmHyZz-0-b6105dd6b4e4c8fcba93de0643b737a9)
之间,所以∃ηi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0010.jpg?sign=1739010017-hkH5u6BXecj9yE2fkkKfRIUaxBbGxqDG-0-b71b21912db0c7ca5f94459cee4ff81a)
于是,有.从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0012.jpg?sign=1739010017-qxKecsRSFw8kREE0mUw1g3cAEtGgqp77-0-e6aed44aca995e8bb0d05d8db39dbcc1)