![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第八届全国大学生数学竞赛预赛(2016年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)若f(x)在点x=a处可导,且f(a)≠0,则.
(2)若f(1)=0,f′(1)存在,求极限.
(3)若f(x)有连续导数,且f(1)=2,记z=f(exy2),若,求f(x)在x>0的表达式.
(4)设f(x)=exsin2x,求f(4)(0).
(5)求曲面平行于平面2x+2y-z=0的切平面方程.
二、(14分)设f(x)在[0,1]上可导,f(0)=0,且当x∈(0,1)时,0<f′(x)<1.试证:当a∈(0,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0005.jpg?sign=1739010794-PGY08r6OzkcojUWOoJTTt610POpSCD2a-0-88f8bb93077b838886316e0b073b02ae)
三、(14分)某物体所在的空间区域为
Ω:x2+y2+2z2≤x+y+2z.
密度函数为x2+y2+z2,求质量
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0006.jpg?sign=1739010794-a2lYlUydxV2N4ljkBwNAKk8bP680ugLT-0-75d9d1577d5542cd3eda86234c5e51ce)
四、(14分)设函数f(x)在闭区间[0,1]上具有连续导数,f(0)=0,f(1)=1,证明:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0007.jpg?sign=1739010794-OZIIy6l0QzA1ndn7VfIdiZerk4NE6eNL-0-131aabfe2d2fd5fec94caec85ceaf5cd)
五、(14分)设函数f(x)在区间[0,1]上连续,且.证明:在(0,1)内存在不同的两点x1,x2,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0009.jpg?sign=1739010794-P1J6r5zje7n3dhQf591D6x1WPA606yCu-0-c94e9b66bac5075da90a7d4bcbcdf9be)
六、(14分)设f(x)在(-∞,+∞)上可导,且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0010.jpg?sign=1739010794-juDA4NqCqi3gA6jKrKvYKbRPiwrCid3S-0-00a0063c0247b85e8c84beedeba2c347)
用傅里叶级数理论证明f(x)为常数.
参考答案
一、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1739010794-zF3oTNRQdk3SpGZmkdoNrPLWUgYnkK9m-0-223234dded72edbc886410ad486effc6)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1739010794-RCw4gZX7OvzAJXm8rsGM5GpyROZIqBB8-0-74efceabc41eccb42707ce66f1c2e4fc)
(3)由题设,得.令exy2=u,则当u>0时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0004.jpg?sign=1739010794-KyWGMuCWFChbrNaD0LIPQvo3sRKCPKzf-0-5dcc81288f1a0ff4e6d477e121b981ca)
积分得lnf(u)=lnu+C1,即f(u)=Cu.
又由初值条件得f(u)=2u.所以,当x>0时,f(x)=2x.
(4)将ex和sin2x展开为带有佩亚诺型余项的麦克劳林公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0005.jpg?sign=1739010794-YNwdO4CeFop9dFjCLmQrP9RtMC04Q3sa-0-19ef091fb93b8a59d1e9070faaf23828)
所以有,即f(4)(0)=-24.
(5)曲面在(x0,y0,z0)的切平面的法向量为(x0,2y0,-1).又切平面与已知平面平行,从而两平面的法向量平行,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0007.jpg?sign=1739010794-h9GkqKCYHvg0FQHiQDL4u0704nWMSxqw-0-c22a46ffd8ee7bf08aca3ea0a64fe8e8)
从而x0=2,y0=1,得z0=3,所以切平面方程为
2(x-2)+2(y-1)-(z-3)=0,即2x+2y-z=3.
二、证明 设,则F(0)=0,下证F′(x)>0.
再设,则F′(x)=f(x)g(x),由于f′(x)>0,f(0)=0,故f(x)>0.从而只要证明g(x)>0(x>0).而g(0)=0.因此只要证明g′(x)>0(0<x<a).而
g′(x)=2f(x)[1-f′(x)]>0.
所以g(x)>0,F′(x)>0,F(x)单调增加,F(a)>F(0),即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1739010794-CiYpTwNuj9WhIqP8tiCF4NipLr4eoiIL-0-4d9c9672f2b9796a480a7dc68a078d94)
三、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1739010794-2LFFI5O779uyQqlGoXI7N9qgnHQjvr2K-0-b7e2540ef45b0c46200c4daa071d4957)
是一个各轴长分别为1,1,的椭球,它的体积为
.
做变换,将区域变成单位球Ω′:u2+v2+w2≤1,而
,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0008.jpg?sign=1739010794-vy9oorDi4mH4qHqCAfjzSvsb8tmmUZVg-0-ec4bbd33ab3e0a8d66a37ba44a05e374)
而 .所以
.
四、证明 将区间[0,1]分成n等份,设分点为,则
.且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0013.jpg?sign=1739010794-wAoF1OWkopTP39jralAeWd90PICDb1jS-0-9d2af49c0c0e2284780fc66e374e170b)
五、证明 设,则F(0)=0,F(1)=1.由介值定理,存在ξ∈(0,1),使得
.在区间[0,ξ],[ξ,1]上分别应用拉格朗日中值定理,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0016.jpg?sign=1739010794-6083q6nzYQzIJb8MttjDLieQ2mZyR02O-0-28a119d13319fb7b16d377a8757a4709)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1739010794-oJ4Yxvb9DwrAiDZI4QmE9t0V4Ke0fJBy-0-20c9844ec9580c4bbdbfdb6fc6e71b67)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1739010794-A8QGAUnbr2KW25lpinwOJey7FHZLRX9V-0-092459845747cc47b18b9c38c94403e0)
六、证明 由可知,f是以2,
为周期的周期函数,所以,它的傅里叶系数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0005.jpg?sign=1739010794-21uk5VO7FbouXJ0qMjTWFFJdRbNGV2eD-0-a0e9d11f547b89b7980ede560d3da30f)
由于,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0007.jpg?sign=1739010794-tOv3XcZHXED37HIPFlhivL2mX8KS0Imn-0-6c953ee70fdfea2663a2e576346a3c9d)
故有;同理可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0009.jpg?sign=1739010794-l1Bj0iyP1WuT6sSREbykdMmqHDuc8gee-0-3684de1db71010f535b4b35c6548dd6e)
联立,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0010.jpg?sign=1739010794-p7IAL5cDDbnUV0SfXCNNn5zUoQUTEWrz-0-e9ecbf5bd6f249e7ff1bbdab1f71d4e5)
解得an=bn=0(n=1,2,…).
而f(x)可导,其傅里叶级数处处收敛于f(x),所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0011.jpg?sign=1739010794-LLdnpvZaZxL6VTEfSHLkpvXlB0VOpy2l-0-66a31696948cd0e3a2f1b4b072e3764c)
其中为常数.