![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739011385-JuepXdnhZ8JpRUXXiZSwYZAN5cXKbBev-0-55d4f5fc7879e977ac089448a340034d)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1739011385-fJHU2r6EOgewPkmzEC1rPDPhG6I8lgCR-0-92716115ed11951266eaf6ff61a8b4d9)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739011385-OncsqUgYj1XQ3Hnr4mKk7rQnHVwYt3VX-0-4151fec27fab7a82c0dba3e87b488b42)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739011385-BeH1ejk5vfTNLCxOKwbwmujvHMwCKDyS-0-5904f4294f0b8a253fbafa1cb9f3ee07)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739011385-u6Ks7cbhq4MSFWks3CIlCxt64TVi7FKo-0-2ee80c4bf3b9b0a01063fe77d56171bd)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739011385-sEM0e88FKQOQC44ZCzt4S05iocpHDuBt-0-849568534f3b295f27b5936799f80837)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739011385-0dsGtwwLM63BPw45nJ7GFDYtIlhoEkoL-0-51d798ed015e73878ffee7d04d5c40ff)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739011385-OoOQsbtW4fID60PTpPwAD2Ovv4eUS6zc-0-51a8dcbe19d45ce92db2ed82ef470dbb)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739011385-7WhrRHr57FlY7pbEgYA4VvcEueCXJB9X-0-20ed83e118b8be5e9a88ef958e78e2df)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739011385-3HEMxW28ZZtRfdfsfJuZsliI7mE1WmBY-0-6f7be8f1dbe69368394da7998e6dedd1)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739011385-OrkeRZ4qDpmhGHmR9j31RBWfyRIJNX38-0-204b4272a33ab6ba16be315503a149df)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739011385-qTCDmpR4Pklk4hOgjks6R9oFRJhh74pU-0-1e1272b993f51ee69709499982a044a0)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739011385-1JmUU8426dJoNOD9lR6gw50oB9izoJoo-0-b81180eae1e332a2a73b7f1d95bae137)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739011385-ptcJgbqBv5vIBIjTKhpxsHXxHEXw865b-0-28167067036393eec517ff4b3e949e7d)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739011385-7llXBBLPCHFF1J62oWmY1B7LsYh8IdNg-0-f85ccaa4c7846e99a593bfbc63105df3)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739011385-aewCB9DdSxHFXk6QT2EdiDK0DLcZsOvj-0-b79d47849708b262c39813c81059ab7a)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739011385-ma431EB3FxqbH5SpoKHI03G0otLJUMH3-0-944495ab03c0758538f2f7e71ae22727)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739011385-V1RvP44nuJzzcqhS9HdpY7ILSLpMNoVj-0-9ff0f09f2bcbfc8c6f7b622e15e4f652)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739011385-44ZhLTOLzlVoWzNYmDJih8wpw3JWF9K2-0-7321cf88baab6d737d029cd94d87bb33)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739011385-WqvUK0i0Cn8aMVFLyO2l3XkacUjehnbg-0-54567a89f1393b35d5be1612686b603d)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1739011385-2XyrCX0T4rExwXgh2WlkfD7EChv5SYIu-0-f17f54307b520418d589e33ead3150bd)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1739011385-WxAKvnHM01QPCNGueL7uoe0YHpNgsYnC-0-ee459ed7745d6605ef353e00f7ef8b1e)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739011385-kpgrvY8dgMDtm7eQk9iDmGP7be4dZ7O4-0-5bef619987258c1d6d0e3f14107cffc0)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739011385-hdIR1D0fC8br0LP0JJufdWVchPiC0zi6-0-48d2e965cfab850a9a7ce47b22e1360d)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739011385-NgZoblzRLE8RE0JGbLdfx9B0HnrvCZvV-0-789d1824a807a3897ed87b19c0535016)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739011385-xxQJDDv4QwDhQcrJkgBUn4gllwQVStMU-0-252bdf676862f57e1758dcf3cd1bac7f)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739011385-Tay85bSWQjCuKydzIDKEZeDeASK2Yb3e-0-34c54463f98af04c3c693b5cb3d3a16b)