![电磁场与电磁波基础教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/773227/b_773227.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.1.2 矢量场的基本运算
除去矢量除法没有定义外,矢量的加、减和乘都比标量的加、减、乘和除更加复杂。一个矢量A可用一条用箭头指示方向的线段来表示,线段长度表示矢量A的模A,箭头指向表示矢量A的方向,如图1.1所示。一个模为1的矢量称为单位矢量。取aA表示与A同方向的单位矢量,则有A=aAA,其中
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0001.jpg?sign=1739264241-BdF4TQZYPUp4ToTzFssxVPmco4cOmFSn-0-4d948b4867df6de6630c55ca279051de)
1.矢量加、减法
两个矢量A和B可按平行四边形法则相加,其对角线表示合成矢量C=A+B,如图1.2所示。矢量加法服从交换律和结合律
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0002.jpg?sign=1739264241-oTTgtv225YyyTQ6a2S2p8ouzZJYxaGbz-0-c809d0e3f2dd5de49149f2a796727849)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0003.jpg?sign=1739264241-7Ku1cWI0aRzMCjJnfe2AT8j8adt0Pzrt-0-50755dc5b6e494323c1d1cc3075546d8)
B和-B可以看做大小相等方向相反的两个矢量,故借助于矢量加法也可以实现矢量减法,如图1.3所示,有
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0004.jpg?sign=1739264241-F9IBqhvaHbK05WrkPUyyykJoSplZIKvc-0-5caef0b5219c914a4f3922294b8be88b)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0005.jpg?sign=1739264241-RLueL1Gej4jQejk11sD7ZvwvEIaxGIjk-0-af8204d039dbea2b859740458ef9d306)
图1.1 点P处的矢量
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0006.jpg?sign=1739264241-KDhdoyXh1rze3z5SMnUUI2tIJPXykguL-0-491da42117a3f3b8a66d2c246fc0dce0)
图1.2 矢量加法
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0012_0007.jpg?sign=1739264241-Og5uTbMMsi2r6NuGsKSYdfv2oD5fVg2A-0-fa2cdc6177b13af6d3a66bce4977c053)
图1.3 矢量减法
2.矢量乘法
一个标量η与一个矢量A的乘积ηA仍为一个矢量,其大小为|η|A,其方向由η的正负来确定:若η>0,则ηA与A平行同向;若η<0,则ηA与A平行反向。
两个矢量A和B的点积(或标积)A·B是一个标量,可看做两矢量相互投影之值,定义为
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0001.jpg?sign=1739264241-9XFiuGplqrHFrqi1C2XTIiwF8rHJrbc5-0-5eab741929b104c2ca928b50357c230f)
式中,θ的取值范围为0≤θ≤π。如图1.4所示,当θ为锐角、直角和钝角时,点积标量为正、零和负值。矢量的点积满足交换律和分配律。
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0002.jpg?sign=1739264241-3GTfsuBdMeLDwMYu6CqDi4FP0yvUDFjH-0-35bdff39151db09ec8b74bab7603acbd)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0003.jpg?sign=1739264241-M0nI84faVFfHxocfBM7Sf5LqkBKrLoHz-0-e808051a312f6d16349b0d419fbd29de)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0004.jpg?sign=1739264241-3sapth9FkonH33IjkWsShawsqlCoFtBr-0-a6f298f418f56c756770f098572d6d40)
图1.4 矢量点积
两个矢量A和B的叉积(或矢积)A×B是一个矢量,它垂直于A和B所在的平面,其指向按右旋法则来确定:当右手四指从矢量A旋转θ角至B时大拇指的指向,如图1.5所示,其定义为
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0005.jpg?sign=1739264241-4YAlrOANruQtXvQz2Vz4iOTTDZ6acBRz-0-ee4f4fb4914cbdaf61ec1c53ffa57ec3)
叉积不满足交换律,但满足分配律,有
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0006.jpg?sign=1739264241-iVlmj1Wr4UlbdbsVcAb2PgLvhLnrp1Yn-0-f9c61df91d69b0f6f555f5342f6306b5)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0007.jpg?sign=1739264241-ZOrhq4rmxyXsykLSX5oIOoS3nbY8AifC-0-3ca1c613b338e2a2dc054d35e3bdb979)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739264241-peCLQ1Pir4H9StsvgmBM7qCh7ffHKWE2-0-eb4cf637abe8c15f3b94fd081893f179)
图1.5 矢量叉积