![电磁场与电磁波基础教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/773227/b_773227.jpg)
1.1.3 常用正交坐标系
一般性的矢量运算并未涉及具体的几何形状,但在实际工程应用中,往往要涉及具体的几何形状,直接运用矢量运算关系式来求解不同物体中的场解是十分复杂的。按物体形状引入相应坐标系,就可以在复杂的矢量运算中将矢量按坐标投影形式分解为简单的标量,然后再合成矢量。这样,不仅可以简化对电磁问题的分析和计算,更便于在坐标分量形式下考查电磁问题的物理特性,了解场的空间分布和变化规律。
三种常用坐标系是:直角(或笛卡儿)坐标系、圆柱坐标系和球坐标系。直角坐标系是最基本也最简单的坐标系,其坐标单位矢量是常矢,而其他坐标系的坐标单位矢量一般是变矢,其方向随空间位置不同而变化。我们应当首先重点掌握直角坐标系及其应用。
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0001.jpg?sign=1739263669-Spi1mpJxYypUHnCCxRN7cXDUUSdp6vF4-0-0ec3b6fcdeb484b0a946fe0d0d2d7a59)
图1.6 直角坐标系
1.直角坐标系
如图1.6所示,直角坐标系中的三个坐标变量是x,y和z,点P(x0,y0,z0)是三个平面x=x0,y=y0和z=z0的交点。通过该点的三个正交单位矢量ax,ay和az指向x,y和z增加的方向,且满足如下右旋关系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0002.jpg?sign=1739263669-HtygAvVZc5emJplJ2JnMWH6eKHiMoYc8-0-d3533cff3be17f2a83d83707f834d9b0)
矢量A和B在直角坐标系中分解为如下三个分量
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0003.jpg?sign=1739263669-BsuPFAZqgf5laDTPItEMFpiUeOwNFr3R-0-c1059d1d7076434812752d6631b61fc1)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739263669-MgZzKYEdVpjf6oSK26zk8Zvjln8NOOin-0-0167ee1813433ef01bc755a1b0fe085f)
显然,A和B的代数运算满足如下关系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0005.jpg?sign=1739263669-4w0AWwDcpF70A27eCqlqcpqubGmTncsn-0-aa5dc70b645521d8f79d26499132ff38)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739263669-hldoDFoWgiabaUdK3hq5WbklEtB7Fmk3-0-b59ba1047fddf5437b3fa0bf31f22f65)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739263669-A924Qa5trOXCYzHJhzFoX3T4uMtbm3FA-0-4fca7b234a2255797ee00e59c0e5eae9)
在直角坐标系中,点P的位置矢量
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739263669-Akfu1vyhaWE1QZQHZaicwrQkg8qVirta-0-0a3a5af75313f3765c4de975a37df10b)
其微分为
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739263669-gX2gkuftIYVgJovOyppHmEmkhpAEQhvR-0-7a46c522f4940a3c2c3044136717bc6c)
2.圆柱坐标系
如图1.7所示,圆柱坐标系中的三个坐标变量是ρ,φ和z,点P(ρ0,φ0,z0)是圆柱面ρ=ρ0、半平面φ=φ0和平面z=z0的交点。通过该点的三个正交单位矢量aρ,aφ和az指向ρ,φ和z增加的方向,且满足如下右旋关系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739263669-2WRgAAKrZiwq1iMNr2GFm97UE2dvTy3c-0-52bb24b7dbd3f9b2c471f472a9d9ffdb)
矢量A和B在圆柱坐标系中分解为如下三个分量
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739263669-sPeM5u0YgG5PHhLyZxYUbKut2rpEnKkL-0-5dbd5381bfa885b81f0fd3fa3a2767b0)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739263669-sIonGeUT1EqEWN8Ul7WqwVumo5LMjC7S-0-015058e784f8be2c69ab6d1e4308476a)
显然,A和B的代数运算满足如下关系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739263669-GF5qTefI5m29uMnLRI3yCK3PF6KTuc7I-0-ecfb074fc928445cc4bda24f4ac64e32)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739263669-dgWj8svHVhQOnOmX1Lmvb7trsVIGjNvK-0-e7bbd069f5860b3d555bf87c9455b35f)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739263669-Htluq40hzj0XlvO2A4kuKreRiiP6wtzS-0-825f9310a2906fa7249af0bd70741da2)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739263669-Al5XHCQPsDlSfFrBg5wxQ4rGKkVNH42j-0-bbc338786154928cf0b8ca17ab86113d)
图1.7 圆柱坐标系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739263669-VAeGL2JOAEU7EJlcHWxUNW7Ixeu3X9Ow-0-130446127dd11c46ac3381cb0de71705)
在圆柱坐标系中,点P的位置矢量可由半平面φ=φ0上的几何关系得到
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739263669-wb7NoNHwClmTMl8q1CvWpdOrL8qwfsnU-0-65c1cbd5a6a2d39ec55d8155a1cbb720)
在工程应用中,由于涉及不同形状的物体,为了分析计算在边界影响下存在的实际电磁结构及其场解,往往需要同时采用几个不同的坐标系,此时需要进行不同坐标系间的相互转换。包括坐标系、单位矢量和矢量间的变换等,详见附录B。这里只写出圆柱坐标系与直角坐标系间的变换与逆变换公式
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0004.jpg?sign=1739263669-5ipBqtmztazLNN1szgM33JgGHptNZ2ZT-0-143290fc5bddcf3551a61c33c01963da)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739263669-XBivjUmVaT2RvzqNgXWyW6Bf4DjyGOBg-0-ecb26b2ae2d8ccda57933279ce539c05)
3.球坐标系
如图1.8所示,球坐标系中的三个坐标变量是r,θ和φ,点P(r0,θ0,φ0)是球面r=r0、正圆锥面θ=θ0和半平面φ=φ0的交点。通过该点的三个正交单位矢量ar,aθ和aφ指向r,θ和φ增加的方向,且满足如下右旋关系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739263669-2a8b9oCtBOgA7W6f2kdt00XbK0d7iCQy-0-16fadc5614cf23d9a016941098519220)
矢量A和B在球坐标系中分解为如下三个分量
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0007.jpg?sign=1739263669-Qb4P5zbhRHIFA3nZLY6eIZFmuT9KaBwO-0-7bd729a07189c423c54ba99b66d73fd4)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739263669-fhMEtHYK8SOb27zv7g903UWJ37C19T8R-0-76a1d848f346b94a05cb420ebe45192b)
显然,A和B的代数运算满足如下关系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739263669-DlgAKMPGzO6WfOYYb8Sm8QvZsWFT0IRa-0-d962c796d918bd371a0b6a4706fde9fd)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0015_0010.jpg?sign=1739263669-NZwcgMfcTocFu57yfm5EL0hHK4JuGO7J-0-fe130e97850523aa34404c5139befa3f)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0016_0001.jpg?sign=1739263669-ZDu0C9CInKLL5KiZl4scmkuht8mr5fMI-0-ee932a44e2f45aaf3ec7a2842a96561b)
图1.8 球坐标系
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739263669-28cz4AwY62k03wz7ngYDqqIAJwZ2ckhw-0-4765a93673ada21c5ecac1ef3d48b8a3)
在球坐标系中,点P的位置矢量可由球面r=r0上的几何关系得到
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739263669-GqRyeEorXKH1jXctB5xs87R6NPIXUo5l-0-bc5e6cc09ac4f2d9acb54bf366ed4e5c)
球坐标系与直角坐标系间的转换关系详见附录B。这里只写出它们间的变换与逆变换公式
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739263669-AC2ibiN3PhO5JU18vH2NNHilih5xP2Lz-0-61209cff785672f5474c24df2d347869)
![](https://epubservercos.yuewen.com/1475A3/3590588604431801/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739263669-gFVcCDUzLEh8CH5KFopLIig2LvL3Q4i3-0-7ab1cb83aee1cfa14ae71bc6ce28fd2e)