大数据及其可视化
上QQ阅读APP看书,第一时间看更新

1.4.2 “是什么”,而不是“为什么”

在小数据时代,相关关系分析和因果分析都不容易,耗费巨大,都要从建立假设开始,然后进行实验——这个假设要么被证实要么被推翻。但是,由于两者都始于假设,这些分析就都有受偏见影响的可能,极易导致错误。与此同时,用来做相关关系分析的数据很难得到。

另一方面,在小数据时代,由于计算机能力的不足,大部分相关关系分析仅限于寻求线性关系。而事实上,实际情况远比人们所想象的要复杂。经过复杂的分析,人们能够发现数据的“非线性关系”。

多年来,经济学家和政治家一直认为收入水平和幸福感是成正比的。从数据图表上可以看到,虽然统计工具呈现的是一种线性关系,但事实上,它们之间存在一种更复杂的动态关系。例如,对于收入水平在1万美元以下的人来说,一旦收入增加,幸福感会随之提升;但对于收入水平在1万美元以上的人来说,幸福感并不会随着收入水平提高而提升。如果能发现这层关系,人们看到的就应该是一条曲线,而不是统计工具分析出来的直线。

这个发现对决策者来说非常重要。如果只看到线性关系,那么政策重心应完全放在增加收入上,因为这样才能增加全民的幸福感。而一旦察觉到这种非线性关系,策略的重心就会变成提高低收入人群的收入水平,因为这样明显更划算。

大数据时代,专家们正在研发能发现并对比分析非线性关系的技术工具。一系列飞速发展的新技术和新软件也从多方面提高了相关关系分析工具发现非因果关系的能力。这些新的分析工具和思路为人们展现了一系列新的视野被有用的预测,看到了很多以前不曾注意到的联系,还掌握了以前无法理解的复杂技术和社会动态。但最重要的是,通过去探求“是什么”而不是“为什么”,相关关系帮助人们更好地了解世界。